基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Traditional image resizing methods usually work in pixel space and use various saliency measures.The challenge is to adjust the image shape while trying to preserve important content.In this paper we perform image resizing in feature space using the deep layers of a neural network containing rich important semantic information.We directly adjust the image feature maps,extracted from a pre-trained classification network,and reconstruct the resized image using neural-network based optimization.This novel approach leverages the hierarchical encoding of the network,and in particular,the high-level discriminative power of its deeper layers,that can recognize semantic regions and objects,thereby allowing maintenance of their aspect ratios.Our use of reconstruction from deep features results in less noticeable artifacts than use of image-space resizing operators.We evaluate our method on benchmarks,compare it to alternative approaches,and demonstrate its strengths on challenging images.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Image resizing by reconstruction from deep features
来源期刊 计算可视媒体(英文版) 学科
关键词
年,卷(期) 2021,(4) 所属期刊栏目 RESEARCH ARTICLE
研究方向 页码范围 453-466
页数 14页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
计算可视媒体(英文)
季刊
2096-0433
10-1320/TP
eng
出版文献量(篇)
180
总下载数(次)
0
论文1v1指导