基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
从电力负荷的变化特点入手,提出基于机器学习的混合模型,该模型采用具有自适应噪声的完整集合经验模式分解技术对电力负荷进行分解,剔除高频噪声影响后,对负荷序列进行重构,采用多目标花授粉优化算法对极限学习机进行优化,分析认为该模型可提高极限学习机预测的准确性和稳定性,结合江苏省月度负荷预测案例验证了模型的有效性.
推荐文章
基于云模型的电力负荷预测
云模型
不确定性数据
负荷预测
基于概率统计的电力负荷时间序列预测模型
电力负荷预测
概率统计
时间序列
预测模型构建
数据预处理
实验验证
基于RBFNN混合粒子群算法的电力负荷短期预测
电力负荷预测
径向基神经网络(RBFNN)
混合粒子群优化算法(HPSO)
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于机器学习的混合模型在电力负荷预测中的应用
来源期刊 河北电力技术 学科
关键词 电力系统 负荷预测 机器学习 分解技术 多目标优化 花授粉优化算法
年,卷(期) 2021,(1) 所属期刊栏目 分析研究|Analysis & Research
研究方向 页码范围 27-30
页数 4页 分类号 TM715
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (51)
共引文献  (18)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(11)
  • 参考文献(1)
  • 二级参考文献(10)
2019(4)
  • 参考文献(3)
  • 二级参考文献(1)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
电力系统
负荷预测
机器学习
分解技术
多目标优化
花授粉优化算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河北电力技术
双月刊
1001-9898
13-1082/TM
大16开
河北省石家庄市体育南大街238号
1982
chi
出版文献量(篇)
2635
总下载数(次)
9
论文1v1指导