基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Spatial dynamics of crop yield provide useful information for improving the production. High sensitivity of crop growth models to uncertainties in input factors and parameters and relatively coarse parameterizations in conventional remote sensing (RS) approaches limited their applications over broad regions. In this study, a process-based and remote sensing driven crop yield model for maize (PRYM–Maize) was developed to estimate regional maize yield, and it was implemented using eight data-model coupling strategies (DMCSs) over the Northeast China Plain (NECP). Simulations under eight DMCSs were validated against the prefecture-level statistics (2010–2012) reported by National Bureau of Statistics of China, and inter-compared. The 3-year averaged result could give more robust estimate than the yearly simulation for maize yield over space. A 3-year averaged validation showed that prefecture-level estimates by PRYM–Maize under DMCS8, which coupled with the development stage (DVS)-based grain-filling algorithm and RS phenology information and leaf area index (LAI), had higher correlation (R, 0.61) and smaller root mean standard error (RMSE, 1.33 t ha–1) with the statistics than did PRYM–Maize under other DMCSs. The result also demonstrated that DVS-based grain-filling algorithm worked better for maize yield than did the harvest index (HI)-based method, and both RS phenology information and LAI worked for improving regional maize yield estimate. These results demonstrate that the developed PRYM–Maize under DMCS8 gives reasonable estimates for maize yield and provides scientific basis facilitating the understanding the spatial variations of maize yield over the NECP.
推荐文章
玉米生长虚拟模型GREENLAB-Maize的评估
玉米
模型
形态结构
生物量分配
可视化
虚拟植物
Simulation of hail effects on crop yield losses for corn-belt states in USA
crops
economic analysis
agriculture
EPIC
soil type
hail damage
simulation model
Ore prospecting model and targets for the Dashuigou tellurium deposit, Sichuan Province, China
1/50,000 steam sediment survey
Ore prospecting model and targets
Dashuigou Te deposit
Sichuan Province
Origin and genetic family of Huhehu oil in the Hailar Basin, northeast China
Hailar Basin
Huhehu Sag
Biomarkers
Chemometrics
Oil–oil and oil–source rock correlations
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Developing a process-based and remote sensing driven crop yield model for maize (PRYM–Maize) and its validation over the Northeast China Plain
来源期刊 农业科学学报(英文) 学科
关键词
年,卷(期) 2021,(2) 所属期刊栏目 Section 1: Using modeling method to evaluate yield and efficiency gaps
研究方向 页码范围 408-423
页数 16页 分类号
字数 语种 英文
DOI 10.1016/S2095-3119(20)63293-2
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (55)
共引文献  (4)
参考文献  (49)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(1)
  • 二级参考文献(0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(4)
  • 参考文献(2)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(2)
  • 二级参考文献(2)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(6)
  • 参考文献(2)
  • 二级参考文献(4)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(5)
  • 参考文献(2)
  • 二级参考文献(3)
2010(4)
  • 参考文献(2)
  • 二级参考文献(2)
2011(6)
  • 参考文献(3)
  • 二级参考文献(3)
2012(6)
  • 参考文献(3)
  • 二级参考文献(3)
2013(8)
  • 参考文献(6)
  • 二级参考文献(2)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(9)
  • 参考文献(8)
  • 二级参考文献(1)
2016(5)
  • 参考文献(4)
  • 二级参考文献(1)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2018(6)
  • 参考文献(3)
  • 二级参考文献(3)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
农业科学学报(英文)
月刊
2095-3119
10-1039/S
北京中关村南大街12号
eng
出版文献量(篇)
4703
总下载数(次)
0
总被引数(次)
19930
论文1v1指导