基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文提出了一种基于卷积神经网络和循环神经网络的深度学习模型,通过分析基因组序列数据,识别人基因组中环形RNA剪接位点.首先,根据预处理后的核苷酸序列,设计了2种网络深度、8种卷积核大小和3种长短期记忆(long short term memory,LSTM)参数,共8组16个模型;其次,进一步针对池化层进行均值池化和最大池化的测试,并加入GC含量提高模型的预测能力;最后,对已经实验验证过的人类精浆中环形RNA进行了预测.结果表明,卷积核尺寸为32×4、深度为1、LSTM参数为32的模型识别率最高,在训练集上为0.9824,在测试数据集上准确率为0.95,并且在实验验证数据上的正确识别率为83%.该模型在人的环形RNA剪接位点识别方面具有较好的性能.
推荐文章
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于Leap Motion和卷积神经网络的手势识别
手势识别
高精度
Leap Motion
灰度处理
卷积神经网络
深度学习
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于卷积神经网络的车牌识别
卷积神经网络
车牌识别
模型训练
权值共享
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络和循环神经网络的环形RNA剪接位点识别研究
来源期刊 生物化学与生物物理进展 学科
关键词 深度学习 卷积神经网络 循环神经网络 环形RNA 剪接位点
年,卷(期) 2021,(3) 所属期刊栏目 研究报告|Research Papers
研究方向 页码范围 328-335
页数 8页 分类号 TP391|Q52
字数 语种 中文
DOI 10.16476/j.pibb.2020.0298
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (23)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1976(1)
  • 参考文献(1)
  • 二级参考文献(0)
1979(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
卷积神经网络
循环神经网络
环形RNA
剪接位点
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
生物化学与生物物理进展
月刊
1000-3282
11-2161/Q
大16开
北京朝阳区大屯路15号中国科学院生物物理研究所内
2-816
1974
chi
出版文献量(篇)
3726
总下载数(次)
14
总被引数(次)
39155
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导