基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Climate change has led to increasing frequency of sudden extreme heavy rainfall events in cities,resulting in great disaster losses.Therefore,in emergency manage-ment,we need to be timely in predicting urban floods.Although the existing machine learning models can quickly predict the depth of stagnant water,these models only target single points and require large amounts of measured data,which are currently lacking.Although numerical models can accurately simulate and predict such events,it takes a long time to perform the associated calculations,especially two-dimensional large-scale calculations,which cannot meet the needs of emergency management.There-fore,this article proposes a method of coupling neural networks and numerical models that can simulate and identify areas at high risk from urban floods and quickly predict the depth of water accumulation in these areas.Taking a drainage area in Tianjin Municipality,China,as an example,the results show that the simulation accuracy of this method is high,the Nash coefficient is 0.876,and the calculation time is 20 seconds.This method can quickly and accurately simulate the depth of water accumulation in high-risk areas in cities and provide technical support for urban flood emergency management.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Rapid Prediction Model of Urban Flood Inundation in a High-Risk Area Coupling Machine Learning and Numerical Simulation Approaches
来源期刊 国际灾害风险科学学报(英文版) 学科
关键词
年,卷(期) 2021,(6) 所属期刊栏目 ARTICLES
研究方向 页码范围 903-918
页数 16页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
国际灾害风险科学学报(英文版)
季刊
2095-0055
11-5970/N
16开
北京市
2010
eng
出版文献量(篇)
272
总下载数(次)
0
期刊文献
相关文献
推荐文献
论文1v1指导