基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Due to the bird's eye view of remote sensing sensors, the orientational information of an object is a key factor that has to be considered in object detection. To obtain rotating bounding boxes, existing studies either rely on rotated anchoring schemes or adding complex rotating ROI transfer layers, leading to increased computational demand and reduced detection speeds. In this study, we propose a novel internal-external optimized convolutional neural network for arbitrary orientated object detection in optical remote sensing images. For the internal opti-mization, we designed an anchor-based single-shot head detector that adopts the concept of coarse-to-fine detection for two-stage object detection networks. The refined rotating anchors are generated from the coarse detection head module and fed into the refining detection head module with a link of an embedded deformable convolutional layer. For the external optimiza-tion, we propose an IOU balanced loss that addresses the regression challenges related to arbitrary orientated bounding boxes. Experimental results on the DOTA and HRSC2016 bench-mark datasets show that our proposed method outperforms selected methods.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An internal-external optimized convolutional neural network for arbitrary orientated object detection from optical remote sensing images
来源期刊 地球空间信息科学学报(英文版) 学科
关键词
年,卷(期) 2021,(4) 所属期刊栏目 Articles
研究方向 页码范围 654-665
页数 12页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
地球空间信息科学学报(英文版)
季刊
1009-5020
42-1610/P
16开
武汉市珞瑜路129号武汉大学测绘校区
1998
eng
出版文献量(篇)
958
总下载数(次)
0
总被引数(次)
2719
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导