基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对目前荧光免疫层析定量图像峰值点定位易受多种因素影响,导致物质定量准确度低的问题,提出了一种融合目标检测的级联卷积神经网络(CNN)算法.第一层级联算法首先使用经改进的AlexNet算法对荧光免疫层析定量图像中包含质控(C)峰和检测(T)峰的区域进行检测和提取.之后将提取到的图像区域送入第二层级联卷积神经网络中,对C峰和T峰的位置进行快速定位.随后将定位结果输入到第三层级联卷积神经网络中,对上一层输出的C峰和T峰的定位结果进行精准微调.最后输出C峰和T峰的准确定位信息.实验结果表明,提出的级联卷积神经网络算法,对荧光免疫层析图像峰值点的平均定位准确度达到了96%以上,提高了峰值点的定位准确度.
推荐文章
基于并行卷积神经网络的人脸关键点定位方法研究
人脸特征点定位
卷积神经网络
图像卷积
下图像采样
基于数据驱动的卷积神经网络电容层析成像图像重建
卷积神经网络
电容层析成像
图像重建
颗粒浓度分布
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
B细胞免疫的卷积神经网络级联故障诊断
B细胞免疫
卷积神经网络
特征提取
故障诊断
可靠性评估
时频图
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于级联卷积神经网络的荧光免疫层析图像峰值点定位方法研究
来源期刊 仪器仪表学报 学科
关键词 荧光免疫层析 目标检测 峰值点定位 级联卷积神经网络
年,卷(期) 2021,(1) 所属期刊栏目 信息处理技术|Information Processing Technology
研究方向 页码范围 217-227
页数 11页 分类号 TP391|TH776
字数 语种 中文
DOI 10.19650/j.cnki.cjsi.J2006990
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (71)
共引文献  (66)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(5)
  • 参考文献(0)
  • 二级参考文献(5)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(9)
  • 参考文献(1)
  • 二级参考文献(8)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(9)
  • 参考文献(1)
  • 二级参考文献(8)
2011(6)
  • 参考文献(2)
  • 二级参考文献(4)
2012(9)
  • 参考文献(3)
  • 二级参考文献(6)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
荧光免疫层析
目标检测
峰值点定位
级联卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
仪器仪表学报
月刊
0254-3087
11-2179/TH
大16开
北京市东城区北河沿大街79号
2-369
1980
chi
出版文献量(篇)
12507
总下载数(次)
27
论文1v1指导