基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高不易分割诊断的毛玻璃结节的分类准确率,同时针对VGG16网络结构卷积层数深,参数多的问题,提出一种基于灰度增强、纹理和形状滤波增强的三维深度卷积神经网络用于肺结节分类.对VGG16网络结构进行优化,提出的模型在肺结节公开数据集LIDC-IDRI上进行训练和测试.结果表明,采用灰度增强、纹理和形状滤波增强相结合的方法图像分类精度最高,准确率为91.7%,其他评价指标包括敏感性和特异性也略有提高,优于现有方法.
推荐文章
基于三维卷积神经网络的动作识别算法
卷积神经网络
三维卷积
人体姿态估计
动作识别
基于伪三维卷积神经网络的手势姿态估计
手势姿态估计
伪三维卷积神经网络
三维特征
深度图像
深度学习
基于改进自生成神经网络的孤立性肺结节分类
PE T-C T 影像
孤立性肺结节
自生成神经网络
分类器
距离测度
基于强分类器的神经网络三维目标识别
模式识别
三维目标识别
神经网络
图像不变矩
强分类器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于三维卷积神经网络的肺结节分类
来源期刊 哈尔滨理工大学学报 学科
关键词 肺结节 深度学习 卷积神经网络
年,卷(期) 2021,(4) 所属期刊栏目 计算机与控制工程|Computer and Control Engineering
研究方向 页码范围 87-93
页数 7页 分类号 TP391.41
字数 语种 中文
DOI 10.15938/j.jhust.2021.04.012
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (80)
共引文献  (447)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(9)
  • 参考文献(1)
  • 二级参考文献(8)
2015(10)
  • 参考文献(0)
  • 二级参考文献(10)
2016(19)
  • 参考文献(3)
  • 二级参考文献(16)
2017(7)
  • 参考文献(4)
  • 二级参考文献(3)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
肺结节
深度学习
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
哈尔滨理工大学学报
双月刊
1007-2683
23-1404/N
大16开
哈尔滨市学府路52号
14-130
1979
chi
出版文献量(篇)
3951
总下载数(次)
6
总被引数(次)
23102
论文1v1指导