基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Portable X-ray fluorescence(pXRF)spectrometry and magnetic susceptibility(MS)via magnetometer have been increasingly used with terrain variables for digital soil mapping.However,this methodology is still emerging in many countries with tropical soils.The objective of this study was to use proximal soil sensor data associated with terrain variables at varying spatial resolutions to predict soil classes using the Random Forest(RF)algorithm.The study was conducted on a 316-ha area featuring highly variable soil classes and complex soil-landscape relationships in Minas Gerais State,Brazil.The overall accuracy and Kappa index were evaluated using soils that were classified at 118 sites,with 90 being used for modeling and 28 for validation.Digital elevation models(DEMs)were created at 5-,10-,20-,and 30-m resolutions using contour lines from two sources.The resulting DEMs were processed to generate 12 terrain variables.Total Fe,Ti,and SiO2 contents were obtained using pXRF,with MS determined via a magnetometer.Soil class prediction was performed using the RF algorithm.The quality of the soil maps improved when using only the five most important covariates and combining proximal sensor data with terrain variables at different spatial resolutions.The finest spatial resolution did not always provide the most accurate maps.The high soil complexity in the area prevented highly accurate predictions.The most important variables influencing the soil mapping were MS,Fe,and Ti.Proximal sensor data associated with terrain information were successfully used to map Brazilian soils at variable spatial resolutions.
推荐文章
Estimation of soil organic carbon storage and its fractions in a small karst watershed
Bare rock rate
Estimation method
soil organic carbon storage
Small watershed
Karst
Genesis and soil environmental implications of intact in-situ rhizoliths in dunes of the Badain Jara
Rhizoliths
Calcification
Leptic regosols
Artemisia roots
Decomposition
Soil moisture
Mercury speciation, bioavailability and risk assessment on soil–rice systems from a watershed impact
Mercury and methylmercury
Rice
Mercury speciation and bioavailability
Paddy soil
Risk assessment
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Proximal sensor-enhanced soil mapping in complex soil-landscape areas of Brazil
来源期刊 土壤圈(英文版) 学科
关键词
年,卷(期) 2021,(4) 所属期刊栏目 Research Articles
研究方向 页码范围 615-626
页数 12页 分类号
字数 语种 英文
DOI 10.1016/S1002-0160(21)60007-3
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (41)
共引文献  (1)
参考文献  (54)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(2)
  • 参考文献(2)
  • 二级参考文献(0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(1)
  • 二级参考文献(1)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(7)
  • 参考文献(2)
  • 二级参考文献(5)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(5)
  • 参考文献(2)
  • 二级参考文献(3)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(4)
  • 参考文献(4)
  • 二级参考文献(0)
2014(7)
  • 参考文献(6)
  • 二级参考文献(1)
2015(11)
  • 参考文献(11)
  • 二级参考文献(0)
2016(9)
  • 参考文献(8)
  • 二级参考文献(1)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(5)
  • 参考文献(5)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
土壤圈(英文版)
双月刊
1002-0160
32-1315/P
16开
南京市北京东路71号中国科学院南京土壤研究所
2-576
1991
eng
出版文献量(篇)
1875
总下载数(次)
0
总被引数(次)
20838
期刊文献
相关文献
推荐文献
论文1v1指导