基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In practical process industries, a variety of online and offline sensors and measuring instruments have been used for process control and monitoring purposes, which indicates that the measurements coming from different sources are collected at different sampling rates. To build a complete process monitoring strategy, all these multi-rate measurements should be considered for data-based modeling and monitoring. In this paper, a novel kernel multi-rate probabilistic principal component analysis (K-MPPCA) model is proposed to extract the nonlinear correlations among different sampling rates. In the proposed model, the model parameters are calibrated using the kernel trick and the expectation-maximum (EM) algorithm. Also, the corresponding fault detection methods based on the nonlinear features are developed. Finally, a simulated nonlinear case and an actual pre-decarburization unit in the ammonia synthesis process are tested to demonstrate the efficiency of the proposed method.
推荐文章
Prospectivity modeling of porphyry copper deposits: recognition of efficient mono- and multi-element
Geochemical signature
Concentration–area (C–A) fractal
Principal component analysis (PCA)
Student's t-value
Fuzzy mineral prospectivity modeling(MPM)
Prediction–area (P–A) plot
Hydrogeochemical evaluation and statistical analysis of groundwater of Sylhet, north-eastern Banglad
Arsenic
Groundwater
Hydrogeochemistry
Multivariate statistics
Spatial distribution
A re-assessment of nickel-doping method in iron isotope analysis on rock samples using multi-collect
Fe isotope
Ni-doping
Stable isotope
Precision and accuracy
Mass bias correction
Pseudo-high mass resolution
Hydrogeochemical processes and multivariate analysis for groundwater quality in the arid Maadher reg
Groundwater quality
Hydrogeochemical processes
Multivariate analysis
Salinity
Mio-Plio
Quaternary aquifer
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Kernel Generalization of Multi-Rate Probabilistic Principal Component Analysis for Fault Detection in Nonlinear Process
来源期刊 自动化学报(英文版) 学科
关键词
年,卷(期) 2021,(8) 所属期刊栏目 PAPERS
研究方向 页码范围 1465-1476
页数 12页 分类号
字数 语种 英文
DOI 10.1109/JAS.2021.1004090
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (41)
共引文献  (37)
参考文献  (32)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1954(1)
  • 参考文献(1)
  • 二级参考文献(0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(5)
  • 参考文献(0)
  • 二级参考文献(5)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(9)
  • 参考文献(1)
  • 二级参考文献(8)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(4)
  • 参考文献(4)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(4)
  • 参考文献(4)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报(英文版)
双月刊
2329-9266
10-1193/TP
大16开
北京市海淀区中关村东路95号
80-604
2014
eng
出版文献量(篇)
801
总下载数(次)
0
论文1v1指导