基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The complex geometric features of subsurface fractures at different scales makes mesh generation challenging and/or expensive.In this paper,we make use of neural style transfer (NST),a machine learning technique,to generate mesh from rock fracture images.In this new approach,we use digital rock fractures at multiple scales that represent 'content'and define uniformly shaped and sized triangles to represent'style'.The 19-layer convolutional neural network (CNN) learns the content from the rock image,including lower-level features (such as edges and corners) and higher-level features (such as rock,fractures,or other mineral fillings),and learns the style from the triangular grids.By optimizing the cost function to achieve approximation to represent both the content and the style,numerical meshes can be generated and optimized.We utilize the NST to generate meshes for rough fractures with asperities formed in rock,a network of fractures embedded in rock,and a sand aggregate with multiple grains.Based on the examples,we show that this new NST technique can make mesh generation and optimi-zation much more efficient by achieving a good balance between the density of the mesh and the presentation of the geometric features.Finally,we discuss future applications of this approach and perspectives of applying machine learning to bridge the gaps between numerical modeling and experiments.
推荐文章
Using Geomechanical Method to Predict Tectonic Fractures in Low-Permeability Sandstone Reservoirs
Low-permeability sandstone reservoir
Fracture parameters
Geomechanical method
Rock chemical weathering by sulfuric acid: pathway, method and prospect
Chemical weathering
Sulfuric acid
Global climate change
Sulfate isotope
Geochemical constraints on the origin and tectonic setting of the serpentinized peridotites from the
Serpentinites
Mantle peridotites
Melt/rock interaction
Paleoproterozoic suture zone
Eseka area
Nyong series
Congo/São Francisco cratons
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Mesh generation and optimization from digital rock fractures based on neural style transfer
来源期刊 岩石力学与岩土工程学报(英文版) 学科
关键词
年,卷(期) 2021,(4) 所属期刊栏目
研究方向 页码范围 912-919
页数 8页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (0)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1941(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(7)
  • 参考文献(2)
  • 二级参考文献(5)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(5)
  • 参考文献(2)
  • 二级参考文献(3)
2018(3)
  • 参考文献(1)
  • 二级参考文献(2)
2019(3)
  • 参考文献(2)
  • 二级参考文献(1)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
岩石力学与岩土工程学报(英文版)
双月刊
1674-7755
42-1801/O3
大16开
湖北省武汉市武昌区水果湖街小洪山2号
38-299
2009
eng
出版文献量(篇)
931
总下载数(次)
0
论文1v1指导