基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Understanding the mechanism of soil organic carbon (SOC) sequestration is of paramount importance in sustaining crop productivity and mitigating climate change. Long-term trials were employed to investigate the responses of total SOC and its pools, i.e., mineral-associated OC (MOC), particulate OC (POC, containing Light-POC and Heavy-POC), to fertilization regimes at Yangling (25-year), Tianshui (35-year) and Pingliang (37-year) under a rain-fed cropping system in the Loess Plateau. The fertilization regimes in each trial included three treatments, i.e., control (no nutrient input, CK), chemical fertilizers (CF), and organic manure plus chemical fertilizers (MCF). Relative to the CK, long-term fertilization appreciably increased SOC storage by 134, 89 and 129 kg ha-1 yr-1 under CF, and 418, 153 and 384 kg ha-1 yr-1 under MCF in plough layer soils (0-20 cm), respectively, at the Yangling, Tianshui and Pingliang sites. The MOC pools accounted for 72, 67 and 64% of the total SOC at the above three sites with sequestration rates of 76, 57 and 83 kg ha-1 yr-1 under CF and 238, 118 and 156 kg ha-1 yr-1 under MCF, respectively. Moreover, the MOC pool displayed a saturation behavior under MCF conditions. The POC accordingly constituted 27, 33 and 36% of SOC, of which Light-POC accounted for 11, 17 and 22% and Heavy-POC for 17, 16 and 15% of SOC, respectively. The sequestration rates of POC were 58, 32 and 46 kg ha-1 yr-1 under CF, and 181, 90 and 228 kg ha-1 yr-1 under MCF at the three respective sites, in which Light-POC explained 59, 81 and 72% of POC under CF, and 60, 40 and 69% of POC under MCF, with Heavy-POC accounting for the balance. Compared with CK, the application of CF alone did not affect the proportions of MOC or total POC to SOC, whereas MCF application markedly reduced the proportion of MOC and increased the POC ratio, mainly in the Light-POC pool. The distribution of SOC among different pools was closely related to the distribution and stability of aggregates. The present study confirmed that organic manure amendment not only sequestered more SOC but also significantly altered the composition of SOC, thus improving SOC quality, which is possibly related to the SOC saturation level.
推荐文章
Dynamics of soil organic carbon following land-use change: insights from stable C-isotope analysis i
C3 photosynthesis
C4 photosynthesis
Land-use change
Stable carbon isotopes
Black soil of Northeast China
Estimation of soil organic carbon storage and its fractions in a small karst watershed
Bare rock rate
Estimation method
soil organic carbon storage
Small watershed
Karst
Characteristics of CO2 in unsaturated zone (~90 m) of loess tableland, Northwest China
Unsaturated zone
Soil CO2
Carbon stock in deep loess
Quantitative paleoclimate reconstruction
Loess
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Changes in soil organic carbon pools following long-term fertilization under a rain-fed cropping system in the Loess Plateau, China
来源期刊 农业科学学报(英文版) 学科
关键词
年,卷(期) 2021,(9) 所属期刊栏目 Agro-Ecosystem & Environment
研究方向 页码范围 2512-2525
页数 14页 分类号
字数 语种 英文
DOI 10.1016/S2095-3119(20)63482-7
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
农业科学学报(英文)
月刊
2095-3119
10-1039/S
北京中关村南大街12号
eng
出版文献量(篇)
4703
总下载数(次)
0
总被引数(次)
19930
期刊文献
相关文献
推荐文献
论文1v1指导