Volume change during the insertion/extraction of Li+ in electrode materials is an important issue to affect the safety and stability of Li-ion batteries. Here, we prepare a near-zero volume change material of COF derived mesh-liked carbon/TiO2 (MC/TiO2) composite by using a layered TiO2 as a template, and a two-dimensional COF material is inserted into the interlayers by the Schiff base polymerization between melamine and terephthalaldehyde, followed by carbonization at 500 ℃ to convert COF to mesh-liked carbon nanosheets. Due to the introduction of mesh-liked carbon nanosheets, the interlayer conductivity of TiO2 is improved, and the nanocavities in mesh-liked carbon nanosheets provide additional chambers for the insertion/extraction of Li-ions without any change of the interlayer distance. The MC/TiO2 shows a specific capacity of 472.7 mAh/g at a current density of 0.1 A/g, and good specific capacity retention of 65% remains after 1000 cycles at a current of 1 A/g.