基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Seismic reservoir prediction plays an important role in oil exploration and development.With the progress of artificial intelligence,many achievements have been made in machine learning seismic reservoir prediction.However,due to the factors such as economic cost,exploration maturity,and technical limitations,it is often difficult to obtain a large number of training samples for machine learning.In this case,the prediction accuracy cannot meet the requirements.To overcome this short-coming,we develop a new machine learning reservoir prediction method based on virtual sample generation.In this method,the virtual samples,which are generated in a high-dimensional hypersphere space,are more consistent with the original data characteristics.Furthermore,at the stage of model building after virtual sample generation,virtual samples screening and model iterative optimization are used to eliminate noise samples and ensure the rationality of virtual samples.The proposed method has been applied to standard function data and real seismic data.The results show that this method can improve the prediction accuracy of machine learning significantly.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Using seismic surveys to investigate sediment distribution and to estimate burial fluxes of OC, N, a
Dongfeng Reservoir
Seismic survey
Sedimentation
Nutrients burial fluxes
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
Optimizing the ratio of the spike to sample for isotope dilution analysis: a case study with seleniu
Isotope dilution method
Error propagation
Mento Carlo
Se concentration
Geological reference materials
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Machine learning seismic reservoir prediction method based on virtual sample generation
来源期刊 石油科学(英文版) 学科
关键词
年,卷(期) 2021,(6) 所属期刊栏目 Petroleum Geology & Geophysics
研究方向 页码范围 1662-1674
页数 13页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
石油科学(英文版)
季刊
1672-5107
11-4995/TE
大16开
北京市学院路20号石油大院15楼317室
2004
eng
出版文献量(篇)
1221
总下载数(次)
1
论文1v1指导