基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
相对于可见光图像边缘检测,目前针对红外图像边缘检测的研究较少,且大多基于传统方法,如边缘检测算子、数学形态学等,其本质上都是只考虑红外图像局部的急剧变化来检测边缘,因而始终受限于低层次特征.本文提出了一种基于深度学习的红外图像边缘检测算法,在DexiNed(Dense Extreme Inception Network for Edge Detection)的基础上,缩减了网络规模,并在损失函数中引入了图像级的差异,精心设置了损失函数的参数,进而优化了网络性能.此外,还通过调整自然图像边缘检测数据集来近似模拟红外图像边缘检测数据集,对改进后的模型进行训练,进一步提高了网络对红外图像中边缘信息的提取能力.定性评价结果表明,本文方法提取的红外图像边缘定位准确、层次清晰、细节丰富、贴合人眼视觉,使用了SSIM(Structural Similarity Index Measure)和FSIM(Feature Similarity Index Measure)指标的定量评价结果进一步体现了本文方法相比于其他方法的优越性.
推荐文章
一种改进的SUSAN边缘检测算法
边缘检测
噪声
门限
VC++
一种改进的Canny边缘检测算法
Canny边缘检测
边缘跟踪
最大熵
模糊数学
中值滤波
一种基于局部特征的拓片图像边缘检测算法
拓片
局部特征
局部标准差均值比
边缘检测
图像处理
一种基于统计排序滤波的图像边缘检测算法
边缘检测
统计排序滤波
滤波窗口
阈值
品质因数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于DexiNed改进的红外图像边缘检测算法
来源期刊 红外技术 学科
关键词 红外图像 边缘检测 深度学习
年,卷(期) 2021,(9) 所属期刊栏目 图像处理与仿真|IMAGE PROCESSING AND SIMULATION
研究方向 页码范围 876-884
页数 9页 分类号 TP391.4
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (19)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(2)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
红外图像
边缘检测
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
红外技术
月刊
1001-8891
53-1053/TN
大16开
昆明市教场东路31号《红外技术》编辑部
64-26
1979
chi
出版文献量(篇)
3361
总下载数(次)
13
论文1v1指导