基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于人脸图像识别年龄及性别是当前人工智能研究的热点之一.提出一种综合卷积神经网络CNN、挤压-激励网络SENet及极限学习机ELM的混合模型.模型中的卷积层用于从人脸图像中提取面部特征,SENet层用于优化卷积层提取的特征,误差最小化极限学习机(EM-ELM)用作分类器以实现面部图像的年龄及性别识别.与现有的流行模型相比,所提模型由于采用了CNN+SENet架构能够从面部图像中提取到更具代表性及最优的特征映射,而EM-ELM的极速计算使得模型更快速、更高效.在多个非限制人脸数据集上的实验结果表明,相比近期其他基于深度学习的相关模型,所提模型具有更高的识别准确率和更快的识别速度.
推荐文章
CNN-ELM混合短文本分类模型
文本分类
卷积神经网络
极速学习机
一种基于Faster R-CNN模型的虹膜检测改进方法
虹膜检测
Faster R-CNN
虹膜定位
目标检测
基于改进CNN的年龄和性别识别
深度学习
卷积神经网络
年龄分类
性别识别
基于DRN和Faster R-CNN融合模型的行为识别算法
行为识别
扩张残差网络
Faster R-CNN
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于CNN-SE-ELM的年龄和性别识别模型
来源期刊 计算机工程与科学 学科
关键词 卷积神经网络 极限学习机 SENet网络 年龄分类 性别分类
年,卷(期) 2021,(5) 所属期刊栏目 图形与图像
研究方向 页码范围 872-882
页数 11页 分类号 TP391.41
字数 语种 中文
DOI 10.3969/j.issn.1007-130X.2021.05.014
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (4)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1969(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(3)
  • 参考文献(2)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(5)
  • 参考文献(3)
  • 二级参考文献(2)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
极限学习机
SENet网络
年龄分类
性别分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导