The liquid-liquid phase separation(LLPS)widely exists in biology,synthetic chemistry,crystallization kinetics and other fields,and it is very important to realize the related functions.The research on the competition between LLPS and micellization/vesiculation has made considerable progress.However,the way to effectively control the formation paths from homogeneous state to aggregates has not been completely solved,which is vital to determine its structure and properties and even its future functions.Here we describe the phenomenon of LLPS and its effect on the dynamic process of self-assembly of amphiphilic diblock copolymers(BCPs).Starting from the establishment of phase diagram,we explore the existence conditions of LLPS state,the internal morphology and external size of large droplets,and its significant implications to the dynamic path of vesicle formation.Vesicles formed via LLPS have larger sized outer dimensions and inner cavities,and contain more solvents during certain stages.The detailed research of LLPS and its self-assembly simulation has contributed to completing its theoretical basis and practical applications in the future in various fields.