基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The multimodel inference makes statistical inferences from a set of plausible models rather than from a single model.In this paper,we focus on the multimodel inference based on smoothed information criteria proposed by seminal monographs (see Buckland et al.(1997) and Burnham and Anderson (2003)),which are termed as smoothed Akaike information criterion (SAIC) and smoothed Bayesian information criterion (SBIC)methods.Due to their simplicity and applicability,these methods are very widely used in many fields.By using an illustrative example and deriving limiting properties for the weights in the linear regression,we find that the existing variance estimation for SAIC is not applicable because of a restrictive condition,but for SBIC it is applicable.Especially,we propose a simulation-based inference for SAIC based on the limiting properties.Both the simulation study and the real data example show the promising performance of the proposed simulation-based inference.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Multimodel inference based on smoothed information criteria
来源期刊 中国科学:数学(英文版) 学科
关键词
年,卷(期) 2021,(11) 所属期刊栏目 Articles
研究方向 页码范围 2563-2578
页数 16页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
中国科学:数学(英文版)
月刊
1674-7283
11-5837/O1
北京东黄城根北街16号
eng
出版文献量(篇)
3691
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导