基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In nature,the properties of matter are ultimately governed by the electronic structures.Quantum chem-istry(QC)at electronic level matches well with a few simple physical assumptions in solving simple prob-lems.To date,machine learning(ML)algorithm has been migrated to this field to simplify calculations and improve fidelity.This review introduces the basic information on universal electron structures of emerging energy materials and ML algorithms involved in the prediction of material properties.Then,the structure-property relationships based on ML algorithm and QC theory are reviewed.Especially,the summary of recently reported applications on classifying crystal structure,modeling electronic struc-ture,optimizing experimental method,and predicting performance is provided.Last,an outlook on ML assisted QC calculation towards identifying emerging energy materials is also presented.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Fluid properties and sources of Sixiangchang carbonateassociated mercury deposit, southwest China
Trace elements
Carbon and oxygen isotopes
Sulfur isotope
Calcite and dolomite
Youjiang Basin
德国版智能电网“E-Energy”
智能电网
E-Energy
能源互联网
分布式能源
SIMPLE算法方腔流动数值仿真
数值模拟
方腔流动
SIMPLE算法
有限容积法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Recent progress on discovery and properties prediction of energy materials:Simple machine learning meets complex quantum chemistry
来源期刊 能源化学 学科
关键词
年,卷(期) 2021,(3) 所属期刊栏目
研究方向 页码范围 72-88
页数 17页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
能源化学
双月刊
2095-4956
10-1287/O6
大连市中山路457号
eng
出版文献量(篇)
2804
总下载数(次)
0
总被引数(次)
7996
论文1v1指导