基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对YOLOv3算法在行人检测上准确率低和漏检率高的问题,提出一种改进型YOLOv3的行人检测方法,并将其定义为GA-Wide-YOLOv3.该方法首先以行人头肩小目标为检测对象,进行重构数据集,利用遗传算法重新对目标先验框进行聚类,优化anchor参数,提高先验框与数据集的重合程度;其次改进YOLOv3,通过加宽网络宽度、减少网络深度,获得针对小目标检测的较大视野阈,避免梯度消失;最后,将多尺度检测算法3个yolo层前的1*1,3*3的卷积组各去掉2组,减少头肩小目标在复杂背景下的漏检率.在收集的数据集HS6936上进行对比实验,结果表明,基于遗传算法改进的K-means算法,平均交并比为81.89%,提高了0.8%;改进的YOLOv3算法检测平均准确率(mAP)为75.35%,召回率为81.20%,查准率为99.99%,较原始YOLOv3算法分别提高了2.53%,0.88%和2.75%.
推荐文章
一种基于改进YOLOv3的密集人群检测算法
密集人群
YOLOv3
特征提取网络
K-means++
基于改进 YOLOv3 的葡萄叶部病虫害检测方法
葡萄病害检测
深度学习
轻量化
注意力机制
基于YOLOv3的车辆多目标检测
车辆
多目标检测
Darknet-53网络
YOLOv3
一种基于改进Yolov3的弹载图像多目标检测方法
弹载图像
目标检测
YOLOv3
位置损失
快速NMS
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进YOLOv3的站口行人检测方法
来源期刊 铁道科学与工程学报 学科
关键词 行人检测 深度学习 YOLOv3 遗传算法 计算机视觉
年,卷(期) 2021,(1) 所属期刊栏目 高速铁路技术与智慧交通|High-speed Rail Technology and Intelligent Transportation
研究方向 页码范围 55-63
页数 9页 分类号 TP391.4
字数 语种 中文
DOI 10.19713/j.cnki.43-1423/u.T20200236
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (70)
共引文献  (87)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(11)
  • 参考文献(0)
  • 二级参考文献(11)
2016(9)
  • 参考文献(1)
  • 二级参考文献(8)
2017(9)
  • 参考文献(1)
  • 二级参考文献(8)
2018(8)
  • 参考文献(8)
  • 二级参考文献(0)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
行人检测
深度学习
YOLOv3
遗传算法
计算机视觉
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
铁道科学与工程学报
月刊
1672-7029
43-1423/U
大16开
长沙市韶山南路22号
42-59
1979
chi
出版文献量(篇)
4239
总下载数(次)
13
总被引数(次)
26874
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导