基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Artificial neural networks can achieve impressive performances,and even outperform humans in some specific tasks.Nevertheless,unlike biological brains,the artificial neural networks suffer from tiny perturbations in sensory input,under various kinds of adversarial attacks.It is therefore necessary to study the origin of the adversarial vulnerability.Here,we establish a fundamental relationship between geometry of hidden representations(manifold perspective)and the general-ization capability of the deep networks.For this purpose,we choose a deep neural network trained by local errors,and then analyze emergent properties of the trained networks through the manifold dimensionality,manifold smoothness,and the generalization capability.To explore effects of adversarial examples,we consider independent Gaussian noise attacks and fast-gradient-sign-method(FGSM)attacks.Our study reveals that a high generalization accuracy requires a relatively fast power-law decay of the eigen-spectrum of hidden representations.Under Gaussian attacks,the relationship between generalization accuracy and power-law exponent is monotonic,while a non-monotonic behavior is observed for FGSM attacks.Our empirical study provides a route towards a final mechanistic interpretation of adversarial vulnerability under adversarial attacks.
推荐文章
The partitioning patterns of nutrients between pods and seeds of Zanthoxylum fruits impacted by envi
Partitioning pattern
Nutritional quality
C:N ratio
Zanthoxylum fruits
Mean annual temperature
Mean annual precipitation
PCI和Local总线冲突问题的研究
PCI总线
Local总线
总线冲突
FIFO
基于MANIFOLD语言的组件依赖描述与动态配置
组件
组件依赖
分布式软件
动态配置
交互语言
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Relationship between manifold smoothness and adversarial vulnerability in deep learning with local errors
来源期刊 中国物理B(英文版) 学科
关键词
年,卷(期) 2021,(4) 所属期刊栏目 SPECIAL TOPIC—Machine learning in statistical physics
研究方向 页码范围 26-34
页数 9页 分类号
字数 语种 英文
DOI 10.1088/1674-1056/abd68e
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
中国物理B(英文版)
月刊
1674-1056
11-5639/O4
北京市中关村中国科学院物理研究所内
eng
出版文献量(篇)
17050
总下载数(次)
0
论文1v1指导