基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的推荐算法和深度学习算法面临着用户冷启动的问题.为了解决冷启动问题,研究人员提出了跨领域推荐,利用其他领域的用户偏好信息和项目特征等各种辅助信息,来提高目标领域的推荐性能,有效缓解目标领域的数据稀疏性和冷启动.然而,传统的跨域推荐通常只利用源域信息提高目标域的性能,却不能利用目标域提高源域性能,从而使它们互相提高推荐性能.为此,研究人员提出将双迁移学习和度量学习集合起来,有效地减少两域的重叠用户量,实现了性能的相互提高.基于此,提出将双迁移度量学习和注意力机制集合起来,将这个方法命名为DML-A模型.经过在Amazon数据集上实验,证明了所提出的模型真实有效,模型的推荐性能比未改进的模型更优.
推荐文章
基于注意力机制的音乐深度推荐算法
深度学习
注意力机制
音乐推荐
一种基于自注意力机制的组推荐方法
群组推荐
自注意力机制
协同过滤
深度学习
融合策略
基于卷积注意力机制和多损失联合的跨模态行人重识别
跨模态行人重识别
深度学习
卷积注意力机制
多损失联合
基于注意力机制的全景分割网络
全景分割
背景类实例重叠
三重态注意力机制
语义增强注意力机制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于双迁移度量学习和注意力机制的跨域推荐
来源期刊 电视技术 学科
关键词 双迁移学习 度量学习 注意力机制 跨越推荐 冷启动
年,卷(期) 2021,(8) 所属期刊栏目 器件与设计|PARTS & DESIGN
研究方向 页码范围 51-55
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.16280/j.videoe.2021.08.016
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (43)
共引文献  (5)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(6)
  • 参考文献(0)
  • 二级参考文献(6)
2018(7)
  • 参考文献(2)
  • 二级参考文献(5)
2019(6)
  • 参考文献(1)
  • 二级参考文献(5)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
双迁移学习
度量学习
注意力机制
跨越推荐
冷启动
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电视技术
月刊
1002-8692
11-2123/TN
大16开
北京市朝阳区酒仙桥北路乙7号(北京743信箱杂志社)
2-354
1977
chi
出版文献量(篇)
12294
总下载数(次)
21
论文1v1指导