基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
空调参与需求响应能够提高电力系统的稳定性.考虑主动储能的需求响应是通过准确预测蓄能罐的储能、释能时长以及系统的运行负荷来保障策略的合理性和高效性.为此,搭建TRNSYS仿真实验平台获取数据,采用相关性分析和主成分分析,选择输入变量并对其降维,比较5种机器学习算法(BP神经网络、RBF神经网络、广义回归神经网络、Elman神经网络和支持向量回归)对空调系统未来1 h和24 h的静态负荷预测.选择Elman神经网络预测蓄能罐的储、释能时长并利用改进的粒子群优化算法进一步优化,对未来1 h和24 h负荷进行滚动预测.结果表明:相关性分析+主成分分析能提高模型的预测精度,Elman神经网络预测精度最高,利用改进的粒子群算法优化后,该模型对未来1 h和24 h负荷预测的拟合优度R2值分别从0.790和0.972提高到0.845和0.975;利用Elman神经网络预测储、释能时长R2值分别为0.993和0.984.
推荐文章
双温蓄能空调系统设计
双温复合相变材料
蓄能空调
蓄能装置
设计
评价
太阳能溶液蓄能空调的简介及分析
太阳能
溶液蓄能
温湿度独立控制
CDP
蓄能密度
地铁冰蓄冷空调系统负荷预测研究
冰蓄冷空调
节能
BP神经网络
遗传算法
负荷预测
建模
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 蓄能空调需求响应时段负荷和储释能时长预测
来源期刊 建筑节能(中英文) 学科
关键词 空调 需求响应 TRNSYS 神经网络 主动储能 支持向量回归
年,卷(期) 2021,(9) 所属期刊栏目 智慧运维
研究方向 页码范围 95-104
页数 10页 分类号 TU831.3
字数 语种 中文
DOI 10.3969/j.issn.2096-9422.2021.09.015
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (95)
共引文献  (26)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(8)
  • 参考文献(2)
  • 二级参考文献(6)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(8)
  • 参考文献(0)
  • 二级参考文献(8)
2015(8)
  • 参考文献(1)
  • 二级参考文献(7)
2016(7)
  • 参考文献(3)
  • 二级参考文献(4)
2017(5)
  • 参考文献(0)
  • 二级参考文献(5)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
空调
需求响应
TRNSYS
神经网络
主动储能
支持向量回归
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
建筑节能
月刊
1673-7237
21-1540/TU
大16开
沈阳市和平区光荣街65号
8-107
1973
chi
出版文献量(篇)
5991
总下载数(次)
8
论文1v1指导