基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对滚动轴承振动信号非线性、非平稳性以及故障难以识别的问题,提出了一种经验小波变换(EWT)、奇异值熵和t分布随机领域嵌入(t-SNE)相结合的滚动轴承故障识别方法.对原始振动信号进行EWT分解得到若干固有模态分量(IMF),对IMF进行奇异值分解求取奇异值熵.利用t-SNE算法对奇异值熵组成的特征矩阵进行降维,所提取的低维特征能够有效反映故障信息.最后,将低维特征输入到K-means分类器中进行模式识别.将该方法应用到滚动轴承实验中并与EMD+奇异值熵+t-SNE、EWT+奇异值熵+PCA方法进行对比,结果表明:所提方法能够更有效地提取滚动轴承的故障特征,提高了故障识别的精度.
推荐文章
基于Hilbert包络谱奇异值和IPSO-SVM的滚动轴承故障诊断研究
EMD
IMF
改进粒子群算法
支持向量机
滚动轴承
基于IMF投影图像分析的滚动轴承故障诊断方法研究
故障诊断
灰度共生矩阵
经验模式分解
投影图像
VMD和t-SNE相结合的滚动轴承故障诊断
变分模态分解
t分布随机邻域嵌入
滚动轴承
特征提取
故障诊断
基于小波包熵和ISODATA的滚动轴承故障诊断
故障诊断
滚动轴承
小波包熵
WPE-ISODATA
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于IMF奇异值熵和t-SNE的滚动轴承故障识别
来源期刊 传感器与微系统 学科
关键词 经验小波变换 奇异值熵 t分布随机领域嵌入 故障识别
年,卷(期) 2021,(3) 所属期刊栏目 计算与测试|Calculation & Test
研究方向 页码范围 134-137
页数 4页 分类号 TH133.33
字数 语种 中文
DOI 10.13873/J.1000-9787(2021)03-0134-04
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (103)
共引文献  (142)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1951(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(12)
  • 参考文献(1)
  • 二级参考文献(11)
2014(15)
  • 参考文献(1)
  • 二级参考文献(14)
2015(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(7)
  • 参考文献(1)
  • 二级参考文献(6)
2017(8)
  • 参考文献(1)
  • 二级参考文献(7)
2018(4)
  • 参考文献(3)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
经验小波变换
奇异值熵
t分布随机领域嵌入
故障识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
传感器与微系统
月刊
1000-9787
23-1537/TN
大16开
哈尔滨市南岗区一曼街29号
14-203
1982
chi
出版文献量(篇)
9750
总下载数(次)
43
总被引数(次)
66438
论文1v1指导