This study investigates the spatial variability of soil organic matter(SOM),soil organic carbon(SOC)and pH in the upper 20-cm layer and 20-40 cm layer in Moso bamboo(Phyllostachys pubescens Pradelle)forests using a geostatistics model.Interpolation maps of SOM,SOC,and pH were developed using ordinary kriging(OK)and inverse distance weighted(IDW)methods.The pH,SOC,and SOM of the two soil layers ranged from 4.6 to 4.7,from 1.5 to 2.7 g kg-1 and from 20.3 to 22.4 g kg-1,respectively.The coefficient of variation for SOM and SOC was 29.9-43.3%while a weak variability was found for pH.Gaussian and exponential models performed well in describing the spatial variability of SOC contents with R2 varying from 0.95 to 0.90.The nugget/sill values of pH are less than 25%,which indicates a strong spatial correlation,while the nugget/sill values of SOC and SOM fall under moderate spatial cor-relation.Interpolation using ordinary kriging and inverse distance weighted methods revealed that the spatial distribu-tion of SOM,SOC,and pH was inconsistent due to external and internal factors across the plots.Regarding the cross-validation results,the ordinary kriging method performed better than inverse distance weighted method for selected soil properties.This study suggests that the spatial variabil-ity of soil chemical properties revealed by geostatistics mod-eling will help decision-makers improve the management of soil properties.