基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决皮肤病图像数据集类内差异大、类间差异小、样本数据集小而带来的过拟合问题,提出基于DSception模块和SE模块的轻量型模型.模型选择ResNet50作为基底结构,用DSception模块代替深度残差网络中的卷积池化层,有效地减少模型训练参数,降低时间复杂度,增加了网络的宽度;利用SE模块代替残差网络中的瓶颈结构,减少训练参数的同时,对图像通道维度重标定,强化特征图重要信息,抑制无用信息.实验表明所提模型准确率达到93.3%,对皮肤病的诊断分类有明显的效果.
推荐文章
基于自注意力机制的方面情感分类
方面词
情感分类
自注意力机制
语义编码
基于混合式注意力机制的语音识别研究
卷积
注意力机制
全局平均池化
长短期记忆网络
LAS模型
基于多尺度融合注意力机制的人脸表情识别研究
计算机视觉
深度学习
人脸表情识别
特征提取
多尺度特征融合
注意力机制
基于残差注意力机制的泥石流沟谷识别
Resnet18
注意力机制
遥感影像
泥石流灾害
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于DSception模块和注意力机制的皮肤病分类识别
来源期刊 电视技术 学科
关键词 皮肤病分类 深度学习 DSception模块 SE模块 通道注意力
年,卷(期) 2021,(8) 所属期刊栏目 器件与设计|PARTS & DESIGN
研究方向 页码范围 133-139
页数 7页 分类号 TP391
字数 语种 中文
DOI 10.16280/j.videoe.2021.08.032
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (8)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
皮肤病分类
深度学习
DSception模块
SE模块
通道注意力
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电视技术
月刊
1002-8692
11-2123/TN
大16开
北京市朝阳区酒仙桥北路乙7号(北京743信箱杂志社)
2-354
1977
chi
出版文献量(篇)
12294
总下载数(次)
21
论文1v1指导