基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对由于光在水中传播所带来的影响,导致所获得的水下图像不清晰以及颜色失真的问题,提出了一种基于条件生成对抗网络(CGAN)的水下图像增强算法.为了达到更好的增强效果,利用完全配对的水下图像与清晰图像进行模型的训练,通过端到端的方式获取增强图像.在生成网络模型中,采用U-Net网络结构进行网络的信息减负,同时为了捕捉到更多的低频特征,在损失函数中引入L1损失,让生成的结果更加真实和清晰.通过最后的实验结果表明:训练的模型有效解决了水下图像的颜色失真与模糊问题,对水下图像有不错的增强效果.
推荐文章
基于条件梯度Wasserstein生成对抗网络的图像识别
生成式对抗网络
条件模型
Wesserstein距离
梯度惩罚
全局和局部一致性
图像识别
基于条件的边界平衡生成对抗网络
生成对抗网络
条件特征
边界平衡
图像生成
基于特征重标定生成对抗网络的图像分类算法
生成对抗网络
图像分类
特征重标定
深度学习
分类重构堆栈生成对抗网络的文本生成图像模型
文本生成图像
堆栈生成对抗网络
分类
重构
跨模态学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于条件生成对抗网络的水下图像增强算法
来源期刊 传感器与微系统 学科
关键词 水下图像增强 条件生成对抗网络 深度学习
年,卷(期) 2021,(5) 所属期刊栏目 计算与测试|Calculation & Test
研究方向 页码范围 121-123
页数 3页 分类号 TP391.4
字数 语种 中文
DOI 10.13873/J.1000-9787(2021)05-0121-03
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (57)
共引文献  (15)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(5)
  • 参考文献(0)
  • 二级参考文献(5)
2017(7)
  • 参考文献(1)
  • 二级参考文献(6)
2018(5)
  • 参考文献(1)
  • 二级参考文献(4)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
水下图像增强
条件生成对抗网络
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
传感器与微系统
月刊
1000-9787
23-1537/TN
大16开
哈尔滨市南岗区一曼街29号
14-203
1982
chi
出版文献量(篇)
9750
总下载数(次)
43
总被引数(次)
66438
论文1v1指导