基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
利用单幅二维图像进行三维人脸重建是图像处理研究领域的热点问题.受深度卷积神经网络(CNN)和三维形变模型(3DMM)的启发,提出一种采用CNN回归3DMM形状和表情参数的方法,进行三维人脸重建.在CNN模型VGG-16的基础上设计一种VGG-BN的改进网络模型,通过在每个卷积层后加入批归一化层,优化网络模型性能;并采用迁移学习方法,将预训练模型引入到VGG-BN网络的训练中.将改进的网络模型在300W-LP数据集上训练,在AFLW2000-3D数据集上测试,并和现有方法进行了对比分析.实验结果表明:改进的网络模型在人脸重建的准确性和泛化性方面都有一定的改善,重建人脸的形状和表情效果较好.
推荐文章
基于姿态估计的单幅图像三维人脸重建
人脸三维重建
姿态估计
深度信息恢复
单幅图像
基于三维卷积神经网络的动作识别算法
卷积神经网络
三维卷积
人体姿态估计
动作识别
基于卷积神经网络的人脸图像美感分类
卷积神经网络
LeNet-5
人脸识别
美感分类
图像处理
基于伪三维卷积神经网络的手势姿态估计
手势姿态估计
伪三维卷积神经网络
三维特征
深度图像
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的单幅图像三维人脸重建
来源期刊 传感器与微系统 学科
关键词 三维人脸重建 三维形变模型(3DMM) 卷积神经网络(CNN) 单幅图像
年,卷(期) 2021,(6) 所属期刊栏目 研究与探讨|Research & Approach
研究方向 页码范围 52-56
页数 5页 分类号 TP391.4
字数 语种 中文
DOI 10.13873/J.1000-9787(2021)06-0052-05
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (5)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
三维人脸重建
三维形变模型(3DMM)
卷积神经网络(CNN)
单幅图像
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
传感器与微系统
月刊
1000-9787
23-1537/TN
大16开
哈尔滨市南岗区一曼街29号
14-203
1982
chi
出版文献量(篇)
9750
总下载数(次)
43
论文1v1指导