基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Combining first-principles accuracy and empirical-potential efficiency for the description of the potential energy sur-face (PES) is the philosopher's stone for unraveling the nature of matter via atomistic simulation.This has been particularly challenging for multi-component alloy systems due to the complex and non-linear nature of the associated PES.In this work,we develop an accurate PES model for the Al-Cu-Mg system by employing deep potential (DP),a neural network based representation of the PES,and DP generator (DP-GEN),a concurrent-learning scheme that generates a compact set of ab initio data for training.The resulting DP model gives predictions consistent with first-principles calculations for various binary and ternary systems on their fundamental energetic and mechanical properties,including formation energy,equilibrium volume,equation of state,interstitial energy,vacancy and surface formation energy,as well as elastic moduli.Extensive benchmark shows that the DP model is ready and will be useful for atomistic modeling of the Al-Cu-Mg system within the full range of concentration.
推荐文章
预拉伸变形对Al-Cu-Mg合金腐蚀性能的影响
Al-Cu-Mg合金
预变形
慢应变速率拉伸
腐蚀性能
高纯Al-Cu-Mg合金铸态组织的研究
高纯铝合金
Al-Cu-Mg合金
铸态组织
扫描电镜
低温球磨粉末冶金制备Al-Cu-Mg合金的微观组织及力学性能
Al-Cu-Mg合金
快速凝固
低温球磨
晶粒细化
组织性能
微量Ag对Al-Cu-Mg合金显微组织与力学性能的影响
Al-Cu-Mg合金
力学性能
显微组织
Ag添加剂
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space
来源期刊 中国物理B(英文版) 学科
关键词
年,卷(期) 2021,(5) 所属期刊栏目 SPECIAL TOPIC —Machine learning in condensed matter physics
研究方向 页码范围 13-21
页数 9页 分类号
字数 语种 英文
DOI 10.1088/1674-1056/abf134
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
中国物理B(英文版)
月刊
1674-1056
11-5639/O4
北京市中关村中国科学院物理研究所内
eng
出版文献量(篇)
17050
总下载数(次)
0
总被引数(次)
27962
论文1v1指导