基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
行人检测是目标检测领域的一个重要分支,目前行人检测算法已经取得了较好的发展,但拥挤场景下存在着行人间的严重遮挡,这为检测任务带来了极大地挑战.为有效缓解该问题,在YOLOv3的基础上进行改进,提出单阶段密集行人检测算法:Crowd-YOLO,该算法将可见框标注信息加入到网络中,使网络同时预测全身框与可见框信息从而提升检测性能;提出时频域融合注意力模块(TFFAM),将频域通道注意力和空间注意力加入到网络中重新分配特征权重;采用数据关联型上采样代替传统的双线性插值,使深层特征图获取更为丰富的信息表达.使用非常具有挑战性的大型拥挤人群场景数据集CrowdHuman进行训练和测试,实验结果表明,所提方法比基础网络在AP50指标上提高了约3.7%,在召回率(Recall)指标上提高了3.4%,其中时频域融合注意力模块为网络带来了2.3%AP的性能增益.实验结果验证了所提方法在拥挤人群场景下的有效性.
推荐文章
一种基于改进YOLOv3的密集人群检测算法
密集人群
YOLOv3
特征提取网络
K-means++
基于YOLOv3的车辆多目标检测
车辆
多目标检测
Darknet-53网络
YOLOv3
基于改进 YOLOv3 的葡萄叶部病虫害检测方法
葡萄病害检测
深度学习
轻量化
注意力机制
基于暗通道和改进YOLOv3的雾天车辆检测算法
雾天车辆检测
暗通道去雾算法
YOLOv3
K-means
先验框
注意力机制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进YOLOv3的密集行人检测
来源期刊 电子测量技术 学科
关键词 行人检测 遮挡问题 YOLO 融合注意力 数据关联型上采样
年,卷(期) 2021,(11) 所属期刊栏目 信息技术及图像处理|Information Technology and Image Processing
研究方向 页码范围 90-95
页数 6页 分类号 TP391.41|TP332
字数 语种 中文
DOI 10.19651/j.cnki.emt.2106129
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (1)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(2)
  • 参考文献(0)
  • 二级参考文献(2)
2019(4)
  • 参考文献(0)
  • 二级参考文献(4)
2020(5)
  • 参考文献(2)
  • 二级参考文献(3)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
行人检测
遮挡问题
YOLO
融合注意力
数据关联型上采样
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量技术
半月刊
1002-7300
11-2175/TN
大16开
北京市东城区北河沿大街79号
2-336
1977
chi
出版文献量(篇)
9342
总下载数(次)
50
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导