基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对金属注射成型(MIM)工业生产零件由于缺陷细微导致的肉眼识别率低和人力资源耗费严重的问题,设计了一种基于卷积神经网络(CNN)的缺陷检测识别方法.利用迁移学习解决当前由于训练数据少而导致识别率低的问题,并提出了一种轻量化特征重用网络模型,对MIM工艺生产的小模数齿轮进行缺陷检测.实验结果表明:训练模型在MIM齿轮缺陷检测的准确率达到98%以上,可对零件实现快速、准确的检测,该检测识别技术可以应用于同类的零件制造业完成分类和检测任务,在工业上具有重要的研究价值和实践意义.
推荐文章
基于迁移学习的塑件外观缺陷柔性检测方法
塑件
外观检测
卷积神经网络
迁移学习
柔性检测
基于Halcon的齿轮缺陷检测系统设计
齿轮
Halcon
图像处理
缺陷
基于多源域深度迁移学习的液晶面板缺陷检测算法
缺陷检测
多源域深度迁移学习
液晶面板
深度学习
基于深度迁移学习的网络入侵检测
深度自编码器
迁移学习
入侵检测
嵌入层
标签层
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于迁移学习和特征重用的MIM齿轮缺陷检测
来源期刊 传感器与微系统 学科
关键词 迁移学习 特征重用 卷积神经网络 缺陷检测
年,卷(期) 2021,(10) 所属期刊栏目 计算与测试|Calculation & Test
研究方向 页码范围 129-131,135
页数 4页 分类号 TP391
字数 语种 中文
DOI 10.13873/J.1000-9787(2021)10-0129-03
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (73)
共引文献  (17)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(15)
  • 参考文献(0)
  • 二级参考文献(15)
2018(16)
  • 参考文献(0)
  • 二级参考文献(16)
2019(7)
  • 参考文献(4)
  • 二级参考文献(3)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
迁移学习
特征重用
卷积神经网络
缺陷检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
传感器与微系统
月刊
1000-9787
23-1537/TN
大16开
哈尔滨市南岗区一曼街29号
14-203
1982
chi
出版文献量(篇)
9750
总下载数(次)
43
论文1v1指导