基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
单一的车辆属性识别已无法满足现有的交通系统,为了提高在实际监控中车辆检测定位的可靠性,利用深度神经网络的思想建立了一种能够在近景监控场景和交通监控场景两种不同场景下识别车辆属性的模型,主要包括车辆类型和颜色两种属性类别.以YOLOv3神经网络为基础,对其进行改进,降低网络深度的同时保证准确率,将车辆类型和颜色属性进行分级训练,提高模型检测速度,此外,创建了AttributesCars车辆属性数据集完成数据准备工作.实验结果表明,所提方法在平均准确率为95.63%的前提下可以满足视频的实时性要求,并且在两种不同场景下均取得了不错的成绩,适用于多场景车辆属性识别.
推荐文章
基于多标签神经网络的行人属性识别
多标签分类
神经网络
行人属性
深度学习
深度神经网络技术在肿瘤细胞识别中的应用
深度神经网络
卷积神经网络
人工智能
肿瘤细胞
综述
一种基于深度卷积神经网络的车辆颜色识别方法
深度学习
卷积神经网络
颜色识别
智能交通
基于深度卷积神经网络的车型识别研究
深度学习
卷积神经网络
支持向量机
高速公路
车型识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 深度神经网络在多场景车辆属性识别中的研究
来源期刊 计算机工程与应用 学科
关键词 深度神经网络 近景监控场景 交通监控场景 YOLOv3 车辆类型 车辆颜色
年,卷(期) 2021,(9) 所属期刊栏目 模式识别与人工智能|Pattern Recognition and Artificial Intelligence
研究方向 页码范围 162-167
页数 6页 分类号 TP301.6
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.2002-0126
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (78)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度神经网络
近景监控场景
交通监控场景
YOLOv3
车辆类型
车辆颜色
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导