作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
高光谱遥感数据具有详细的地物光谱与空间信息.针对高光谱数据空间信息在以往分类方法中未得到充分利用而导致鲁棒性与分类精度较低的问题,提出了一种改进的超像素分割与三维卷积神经网络分类方法.该方法首先通过超像素分割与模糊聚类对高光谱遥感数据进行区域分割,再使用三维卷积神经网络对得到的区域分割结果与高光谱数据形成的空-谱联合数据进行训练与分类.通过对空间区域进行划分融合,所提方法提升空间信息在分类中的作用,减小"同物异谱"现象对分类的影响,同时引入三维卷积神经网络对空-谱联合数据进行训练与分类,提升了高光谱分类精度.所提方法在Pavia University和Salinas数据集的总体准确率为97.53%和98.48%,与各对照实验相比,具有更为良好的分类效果,验证了所提方法的有效性.
推荐文章
基于加权K近邻和卷积神经网络的高光谱图像分类
高光谱图像分类
K近邻
卷积神经网络
结合卷积神经网络和超像素聚类的细胞图像分割方法
细胞分割
卷积神经网络
超像素聚类
染色校正
乳腺细胞图像
基于三维卷积神经网络的动作识别算法
卷积神经网络
三维卷积
人体姿态估计
动作识别
基于级联式三维卷积神经网络的肝肿瘤自动分割
肝肿瘤
自动分割
级联式卷积神经网络
残差结构
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于三维卷积神经网络与超像素分割的高光谱分类
来源期刊 光学学报 学科 工学
关键词 图像处理 高光谱数据 超像素分割 模糊聚类 三维卷积神经网络
年,卷(期) 2021,(22) 所属期刊栏目 图像处理|Image Processing
研究方向 页码范围 56-63
页数 8页 分类号 TP751
字数 语种 中文
DOI 10.3788/AOS202141.2210001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像处理
高光谱数据
超像素分割
模糊聚类
三维卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
光学学报
半月刊
0253-2239
31-1252/O4
大16开
上海市嘉定区清河路390号(上海800-211信箱)
4-293
1981
chi
出版文献量(篇)
11761
总下载数(次)
35
论文1v1指导