We investigate the general condition for an operator to be unitary.This condition is introduced according to the definition of the position operator in curved space.In a particular case,we discuss the concept of translation operator in curved space followed by its relation with an anti-Hermitian generator.Also we introduce a universal formula for adjoint of an arbitrary linear operator.Our procedure in this paper is totally different from others,as we explore a general approach based only on the algebra of the operators.Our approach is only discussed for the translation operators in one-dimensional space and not for general operators.