基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The digitization,informatization,and intelligentization of physical systems require strong support from big data analysis.However,due to restrictions on data security and privacy and concerns about the cost of big data collection,transmission,and storage,it is difficult to do data aggregation in real-world power systems,which directly retards the effective implementation of smart grid analytics.Federated learning,an advanced distributed learning method proposed by Google,seems a promising solution to the above issues.Nevertheless,it relies on a server node to complete model aggregation and the framework is limited to scenarios where data are independent and identically distributed.Thus,we here propose a serverless distributed learning platform based on blockchain to solve the above two issues.In the proposed platform,the task of machine learning is performed according to smart contracts,and encrypted models are aggregated via a mechanism of knowledge distillation.Through this proposed method,a server node is no longer required and the learning ability is no longer limited to independent and identically distributed scenarios.Experiments on a public electrical grid dataset will verify the effectiveness of the proposed approach.
推荐文章
基于Access Grid的通用视频会议系统研究
网格
Access Grid
虚拟会场
视频会议
基于Grid Services的NGN业务生成
NGN,Grid services,业务生成模型,承载能力,业务分解
Model Analytics辅助的智能放疗计划建模
智能计划
RapidPlan
Model Analytics
机器学习
建模
Crypto-grid计算系统的设计与实现
网格
密码计算
密码网格
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Serverless distributed learning for smart grid analytics
来源期刊 中国物理B(英文版) 学科
关键词
年,卷(期) 2021,(8) 所属期刊栏目 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY
研究方向 页码范围 637-645
页数 9页 分类号
字数 语种 英文
DOI 10.1088/1674-1056/abe232
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
中国物理B(英文版)
月刊
1674-1056
11-5639/O4
北京市中关村中国科学院物理研究所内
eng
出版文献量(篇)
17050
总下载数(次)
0
总被引数(次)
27962
论文1v1指导