基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
To solve the problem that the magnetic resonance (MR) image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov random field (MRMRF) model.The algorithm uses undecimated dual-tree complex wavelet transformation to transform the image into multiple scales.The transformed low-frequency scale histogram is used to improve the initial clustering center of the K-means algorithm,and then other cluster centers are selected according to the maximum distance rule to obtain the coarse-scale segmentation.The results are then segmented by the improved MRMRF model.In order to solve the problem of fuzzy edge segmentation caused by the gray level inhomogeneity of MR image segmentation under the MRMRF model,it is proposed to introduce variable weight parameters in the segmentation process of each scale.Furthermore,the final segmentation results are optimized.We name this algorithm the variable-weight multi-resolution Markov random field(VWMRMRF).The simulation and clinical MR image segmentation verification show that the VWMRMRF algorithm has high segmentation accuracy and robustness,and can accurately and stably achieve low signal-to-noise ratio,weak boundary MR image segmentation.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Magnetic-resonance image segmentation based on improved variable weight multi-resolution Markov random field in undecimated complex wavelet domain
来源期刊 中国物理B(英文版) 学科
关键词
年,卷(期) 2021,(7) 所属期刊栏目 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY
研究方向 页码范围 748-761
页数 14页 分类号
字数 语种 英文
DOI 10.1088/1674-1056/abe1a2
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
中国物理B(英文版)
月刊
1674-1056
11-5639/O4
北京市中关村中国科学院物理研究所内
eng
出版文献量(篇)
17050
总下载数(次)
0
总被引数(次)
27962
论文1v1指导