原文服务方: 地球化学学报(英文)       
摘要:
The carbon pool stored in soil carbonate is comparable to the soil organic carbon. Therefore, secondary calcite precipitation in supersaturated catchment could be an important, yet poorly constrained, carbon sink within the modern global carbon cycle. The chemical analysis of some dissolved species transported by rivers, such as elevated Sr/Ca and Mg/Ca ratios but also heavy stable Ca isotopic compositions, witness the formation of secondary calcite in rivers draining arid regions. However, in areas affected by active tectonics and rapid physical erosion, co-variations in the fluvial Sr/Ca and Mg/Ca ratios could also be related to incongruent carbonate weathering processes. Here, we present a model to assess the roles played by incongruent carbonate dissolution and secondary calcite precipitation in modern weathering processes. We tested and applied the model to rivers draining the Himalayan-Tibetan region. The results suggest that regional aridity in the drainage basin promotes carbon sequestration as secondary carbonate but that for a given runoff, incongruent dissolution of carbonate possibly related to rapid physical erosion amplifies such sequestration. The isotopic compositions (13C/12C and 18O/16O) of detrital carbonate transported by the main rivers in South and South-East Tibet imply that around 1% of the suspended material transported by those rivers corresponds to secondary carbonate and can represent between 5% and 15% of the alkalinity flux. Most of these alkalinity transported as particulate material is, nevertheless related to the weathering of carbonate lithologies and is also subjected to dissolution prior its final storage in sedimentary basins. However, on glacial-interglacial timescale this will amplify the significant role of mountain weathering on climatic variations.
推荐文章
Sources of dissolved inorganic carbon in rivers from the Changbaishan area, an active volcanic zone
Carbon isotopes
Dissolved inorganic carbon
Rivers
Chemical weathering
Changbaishan
Active volcanic zone
Seasonal shifts in the solute ion ratios of vadose zone rock moisture from the Eel River Critical Zo
Vadose zone
Solute ion ratios
Critical Zone Observatory
Seasonal solute dynamics
Role of hydro-geochemical functions on karst critical zone hydrology for sustainability of water res
Hydro-geochemical analysis
Karst critical zone
Water resources
Vegetation Southwest China
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Sequestration of carbon as carbonate in the critical zone: insights from the Himalayas and Tibetan P
来源期刊 学科 地球科学
关键词 Carbonate Weathering Isotope Tectonic forcing
年,卷(期) 2022,(3) 所属期刊栏目
研究方向 页码范围 389-391
页数 2页 分类号
字数 语种 英文
DOI 10.1007/s11631-017-0170-6
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Carbonate
Weathering
Isotope
Tectonic forcing
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地球化学学报(英文)
双月刊
2096-0956
52-1161/p
16开
贵阳市林城西路99号
1982-01-01
英语
出版文献量(篇)
230
总下载数(次)
0
总被引数(次)
0
期刊文献
相关文献
推荐文献
论文1v1指导