原文服务方: 地球化学学报(英文)       
摘要:
A type of carbonate-hosted lead–zinc (Pb–Zn) ore deposits, known as Mississippi Valley Type (MVT) deposits, constitutes an important category of lead–zinc ore deposits. Previous studies proposed a fluid-mixing model to account for metal precipitation mechanism of the MVT ore deposits, in which fluids with metal-chloride complexes happen to mix with fluids with reduced sulfur, producing metal sulfide deposition. In this hypothesis, however, the detailed chemical kinetic process of mixing reactions, and especially the controlling factors on the metal precipitation are not yet clearly stated. In this paper, a series of mixing experiments under ambient temperature and pressure conditions were conducted to simulate the fluid mixing process, by titrating the metal-chloride solutions, doping with or without dolomite, and using NaHS solution. Experimental results, combined with the thermodynamic calculations, suggest that H2S, rather than HS- or S2-, dominated the reactions of Pb and/or Zn precipitation during the fluid mixing process, in which metal precipitation was influenced by the stability of metal complexes and the pH. Given the constant concentrations of metal and total S in fluids, the pH was a primary factor controlling the Pb and/or Zn metal precipitation. This is because neutralizing or neutralized processes for the ore-forming fluids can cause instabilities of Pb and/or Zn chloride complexes and re-distribution of sulfur species, and thus can facilitate the hydrolysis of Pb and Zn ions and precipitation of sulfides. Therefore, a weakly acidic to neutral fluid environment is most favorable for the precipitation of Pb and Zn sulfides associated with the carbonate-hosted Pb–Zn deposits.
推荐文章
An experimental study of interaction between pure water and alkaline feldspar at high temperatures a
Alkaline feldspar
Autoclave
High-temperature and high-pressure experiments
An experimental study on dynamic coupling process of alkaline feldspar dissolution and secondary min
Alkaline feldspar
Dissolution rate
Precipitation
Mineral conversion
Secondary porosity
Ore genesis of Badi copper deposit, northwest Yunnan Province, China: evidence from geology, fluid i
Badi copper deposit
Fluid inclusion
Sulfur isotope
Hydrogen and oxygen isotope
Ore genesis
Fluid properties and sources of Sixiangchang carbonateassociated mercury deposit, southwest China
Trace elements
Carbon and oxygen isotopes
Sulfur isotope
Calcite and dolomite
Youjiang Basin
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An experimental study on metal precipitation driven by fluid mixing: implications for genesis of car
来源期刊 学科 地球科学
关键词 Metal precipitation Fluid mixing Sulfur species MVT lead–zinc ore deposits Carbonate-hosted lead–zinc deposits
年,卷(期) 2022,(2) 所属期刊栏目
研究方向 页码范围 202-215
页数 13页 分类号
字数 语种 英文
DOI 10.1007/s11631-019-00314-4
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Metal precipitation
Fluid mixing
Sulfur species
MVT lead–zinc ore deposits
Carbonate-hosted
lead–zinc deposits
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地球化学学报(英文)
双月刊
2096-0956
52-1161/p
16开
贵阳市林城西路99号
1982-01-01
英语
出版文献量(篇)
230
总下载数(次)
0
总被引数(次)
0
论文1v1指导