原文服务方: 高压电器       
摘要:
为了提高变压器故障诊断精确度,提出量子粒子群算法(QPSO)优化相关向量机(RVM)的变压器故障诊断方法。采用4个二分类RVM来实现变压器故障诊断的多分类问题。相关向量机的组合核函数可融合变压器运行状态的多种特征信息,为非线性、有限样本数据的变压器故障诊断建模问题提供有效的方法。利用量子粒子群算法对RVM诊断模型参数快速寻优,并结合CV原理设置适应度函数可有效提高诊断模型的泛化能力。实例分析表明,该耦合算法诊断正确率为91.1%,优于三比值法、BPNN、PSO-SVM方法,可有效提高变压器故障诊断精度。
推荐文章
基于DGA支持向量机的变压器故障诊断
DGA
支持向量机
变压器
故障诊断
参数优化
SVM模型
基于改进粒子群优化XGBoost的变压器故障诊断方法
变压器
故障诊断
极端梯度提升
粒子群算法
无编码比值
基于量子粒子群优化的SVM的模拟电路故障诊断
小波包变换
支持向量机
量子粒子群算法
故障诊断
基于粒子群算法和支持向量机的故障诊断研究
最小二乘支持向量机
粒子群算法
故障诊断
全局最优
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于组合核相关向量机和量子粒子群优化算法的变压器故障诊断方法
来源期刊 高压电器 学科
关键词 变压器 故障诊断 量子粒子群优化 相关向量机 组合核函数
年,卷(期) 2022,(10) 所属期刊栏目 研究与分析
研究方向 页码范围 131-135
页数 4页 分类号
字数 语种 中文
DOI 10.13296/j.1001-1609.hva.2017.10.022
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
变压器
故障诊断
量子粒子群优化
相关向量机
组合核函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
高压电器
月刊
1001-1609
61-1127/TM
大16开
西安市西二环北段18号
1958-01-01
汉语
出版文献量(篇)
635
总下载数(次)
0
总被引数(次)
0
论文1v1指导