基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Fine-grained weather forecasting data,i.e.,the grid data with high-resolution,have attracted increasing attention in recent years,especially for some specific applications such as the Winter Olympic Games.Although European Centre for Medium-Range Weather Forecasts (ECMWF) provides grid prediction up to 240 hours,the coarse data are unable to meet high requirements of these major events.In this paper,we propose a method,called model residual machine learning (MRML),to generate grid prediction with high-resolution based on high-precision stations forecasting.MRML applies model output machine learning (MOML) for stations forecasting.Subsequently,MRML utilizes these forecasts to improve the quality of the grid data by fitting a machine learning (ML)model to the residuals.We demonstrate that MRML achieves high capability at diverse meteorological elements,specifically,temperature,relative humidity,and wind speed.In addition,MRML could be easily extended to other post-processing methods by invoking different techniques.In our experiments,MRML outperforms the traditional downscaling methods such as piecewise linear interpolation (PLI) on the testing data.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
Diagenetic evolution of clastic reservoirs and its records in fine subsection: significance and appl
Tight sandstone reservoirs
Diagenetic evolution
Fine subsection
Significance
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A station-data-based model residual machine learning method for fine-grained meteorological grid prediction
来源期刊 应用数学和力学(英文版) 学科 数学
关键词
年,卷(期) 2022,(2) 所属期刊栏目
研究方向 页码范围 155-166
页数 12页 分类号 O29
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学和力学(英文版)
月刊
0253-4827
31-1650/O1
16开
上海市上大路99号
1980
eng
出版文献量(篇)
3175
总下载数(次)
0
论文1v1指导