原文服务方: 高压电器       
摘要:
气体绝缘金属封闭开关设备的局部放电具有随机性,即使同一类型缺陷仍有较多表观变化形式,传统模式识别构造的特征难以适应其多变性;近年来兴起的卷积神经网络虽具有自适应提取特征的能力,但训练得到性能更好的网络模型一方面需要增加网络深度,另一方面需要更多的数据样本作为支撑。鉴于此,提出了基于在ImageNet数据集上训练的VGG、InceptionV3、Resnet50 3种网络模型迁移学习的GIS局部放电模式识别方法,并将网络提取的特征应用于在小数据集下表现良好的经典分类器SVM,实现卷积神经网络深度学习和机器学习的结合。实验表明,该方法能够有效提升GIS局部放电模式识别的准确率。
推荐文章
卷积神经网络在岩性识别中的应用
测井解释
深度学习
卷积神经网络
岩性识别
基于神经网络的变压器绝缘局部放电识别
变压器
绝缘
局部放电
神经网络
识别
B细胞免疫的卷积神经网络级联故障诊断
B细胞免疫
卷积神经网络
特征提取
故障诊断
可靠性评估
时频图
基于卷积神经网络的滚动轴承故障诊断方法
深度学习
卷积神经网络
特征自动提取
轴承故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 卷积神经网络迁移学习在局部放电类型诊断中的应用
来源期刊 高压电器 学科
关键词 卷积神经网络 深度学习 GIS 局部放电 模式识别
年,卷(期) 2022,(4) 所属期刊栏目 技术讨论
研究方向 页码范围 158-164
页数 6页 分类号
字数 语种 中文
DOI 10.13296/j.1001⁃1609.hva.2022.04.022
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
深度学习
GIS
局部放电
模式识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
高压电器
月刊
1001-1609
61-1127/TM
大16开
西安市西二环北段18号
1958-01-01
汉语
出版文献量(篇)
635
总下载数(次)
0
总被引数(次)
0
论文1v1指导