基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Software Defect Prediction (SDP) technology is an effective tool for improving software system quality that has attracted much attention in recent years.However,the prediction of cross-project data remains a challenge for the traditional SDP method due to the different distributions of the training and testing datasets.Another major difficulty is the class imbalance issue that must be addressed in Cross-Project Defect Prediction (CPDP).In this work,we propose a transfer-leaning algorithm (TSboostDF) that considers both knowledge transfer and class imbalance for CPDP.The experimental results demonstrate that the performance achieved by TSboostDF is better than those of existing CPDP methods.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
Data Transfer Object模式探讨
Data Transfer Object 三层应用 DataSet
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Novel Cross-Project Software Defect Prediction Algorithm Based on Transfer Learning
来源期刊 清华大学学报自然科学版(英文版) 学科
关键词
年,卷(期) 2022,(1) 所属期刊栏目 SPECIAL SECTION ON RELIABILITY AND SECURITY
研究方向 页码范围 41-57
页数 17页 分类号
字数 语种 英文
DOI 10.26599/TST.2020.9010040
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
清华大学学报自然科学版(英文版)
双月刊
1007-0214
11-3745/N
16开
北京市海淀区双清路学研大厦B座908
1996
eng
出版文献量(篇)
2269
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导