基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Identifying the association between metabolites and diseases will help us understand the pathogenesis of diseases,which has great significance in diagnosing and treating diseases.However,traditional biometric methods are time consuming and expensive.Accordingly,we propose a new metabolite-disease association prediction algorithm based on DeepWalk and random forest (DWRF),which consists of the following key steps:First,the semantic similarity and information entropy similarity of diseases are integrated as the final disease similarity.Similarly,molecular fingerprint similarity and information entropy similarity of metabolites are integrated as the final metabolite similarity.Then,DeepWalk is used to extract metabolite features based on the network of metabolite-gene associations.Finally,a random forest algorithm is employed to infer metabolite-disease associations.The experimental results show that DWRF has good performances in terms of the area under the curve value,leave-one-out cross-validation,and five-fold cross-validation.Case studies also indicate that DWRF has a reliable performance in metabolite-disease association prediction.
推荐文章
基于Random Forest和AHP的贵德县北部山区滑坡危险性评价
滑坡危险性
组合赋权模型
层次分析法
随机森林法
基于矩阵分解的DeepWalk链路预测算法
链路预测
神经网络
DeepWalk
网络表示学习
矩阵分解
相似度矩阵
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Forest carbon storage in Guizhou Province based on field measurement dataset
Forest carbon storage
Field measurement dataset
Karst landform
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Metabolite-Disease Association Prediction Algorithm Combining DeepWalk and Random Forest
来源期刊 清华大学学报自然科学版(英文版) 学科
关键词
年,卷(期) 2022,(1) 所属期刊栏目 SPECIAL SECTION ON CLOUD COMPUTING AND BIG DADA
研究方向 页码范围 58-67
页数 10页 分类号
字数 语种 英文
DOI 10.26599/TST.2021.9010003
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
清华大学学报自然科学版(英文版)
双月刊
1007-0214
11-3745/N
16开
北京市海淀区双清路学研大厦B座908
1996
eng
出版文献量(篇)
2269
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导