The nanofrictional behavior of non-halogentated phosphonium-based ionic liquids (ILs) mixed with diethylene glycol dibutyl ether in the molar ratios of 1:10 and 1:70 was investigated on the titanium (Ti) substrate using atomic force microscopy (AFM). A significant reduction is observed in the friction coefficient μ for the IL-oil mixtures with a higher IL concentration (1:10, μ ~ 0.05), compared to that for the lower concentration 1:70 (μ ~ 0.1). AFM approaching force–distance curves and number density profiles for IL-oil mixtures with a higher concentration revealed that the IL preferred to accumulate at the surface forming IL-rich layered structures. The ordered IL-rich layers formed on the titanium surface facilitated the reduction of the nanoscale friction by preventing direct surface-to-surface contact. However, the ordered IL layers disappeared in the case of lower concentration, resulting in an incomplete boundary layers, because the ions were displaced by molecules of the oil during sliding and revealed to be less efficient in friction reduction.