基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Numerous linear grooves have long been recognized as covering the surface of Phobos, but the mechanisms of their formation are still unclear. One possible mechanism is related to the largest crater on Phobos, the Stickney crater, whose impact ejecta may slide, roll, bounce, and engrave groove-like features on Phobos. When the launch velocity is higher than the escape velocity, the impact ejecta can escape Phobos. A portion of these high-velocity ejecta are dragged by the gravitational force of Mars, fall back, and reimpact Phobos. In this research, we numerically test the hypothesis that the orbital ejecta of the Stickney crater that reimpact Phobos could be responsible for a particular subset of the observed grooves on Phobos. We adopt impact hydrocode iSALE-2D (impact-Simplified Arbitrary Lagrangian Eulerian, two-dimensional) to simulate the formation of the Stickney crater and track its impact ejecta, with a focus on orbital ejecta with launch velocities greater than the escape velocity of Phobos. The launch velocity distribution of the ejecta particles is then used to calculate their trajectories in space and determine their fates. For orbital ejecta reimpacting Phobos, we then apply the sliding boulder model to calculate the ejecta paths, which are compared with the observed groove distribution and length to search for causal relationships. Our ejecta trajectory calculations suggest that only ~1% of the orbital ejecta from the Stickney crater can reimpact Phobos. Applying the sliding boulder model, we predict ejecta sliding paths of 9?20 km in a westward direction to the east of the zone of avoidance, closely matching the observed grooves in that region. The best-fit model assumes an ejecta radius of ~150 m and a speed restitution coefficient of 0.3, consistent with the expected ejecta and regolith properties. Our calculations thus suggest the groove class located to the east of the zone of avoidance may have been caused by reimpact orbital ejecta from the Stickney crater.
推荐文章
Organic geochemistry of the Lower Permian Tak Fa Formation in Phetchabun Province, Thailand: implica
Biomarker
Depositional environment
Source inputs
Tak Fa Formation
Khao Khwang Platform
Constraints on sedimentary ages of the Chuanlinggou Formation in the Ming Tombs, Beijing, North Chin
Detrital zircon
LA-ICP-MS U–Pb ages
SHRIMP
Chuanlinggou Formation
Ancient sedimentary environment
North China Craton
The importance of non-carbonate mineral weathering as a soil formation mechanism within a karst weat
Critical zone
Chemical weathering
Karst
Desertification
Guizhou Province
Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from Shangzhi, N
Mantle peridotite
Li isotope
Mantle metasomatism
Northeastern China
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Groove formation on Phobos from reimpacting orbital ejecta of the Stickney crater
来源期刊 地球与行星物理(英文版) 学科
关键词
年,卷(期) 2022,(3) 所属期刊栏目 LETTERS
研究方向 页码范围 294-303
页数 10页 分类号
字数 语种 英文
DOI 10.26464/epp2022027
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
地球与行星物理(英文)
双月刊
2096-3955
10-1502/P
大16开
北京朝阳区北土城西路19号地质与地球所
2017
eng
出版文献量(篇)
263
总下载数(次)
0
期刊文献
相关文献
推荐文献
论文1v1指导