基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于支持矩阵机(SMM)利用平行超平面实现对不同类别样本的分类,使其无法最大化任意两类样本之间间隔,为此,通过分析非平行超平面与支持矩阵机的相关理论,提出了一种多分类边界支持矩阵机(MBSMM),并将其应用于滚动轴承的故障诊断中.首先,在MBSMM中以矩阵为建模元素,建立了其多分类目标函数,充分利用输入矩阵行与列之间的结构化信息;然后,利用非平行边界超平面来隔离任意两种类型的数据,非平行边界超平面可以最大化任意两类样本之间的间隔;引入了逐次超松弛法(SOR)进行对偶问题求解,SOR可以线性收敛到最优值,不需要太多计算就可以处理大规模数据集,大大提高了算法的计算效率;最后,将其应用于滚动轴承的故障诊断中,通过滚动轴承数据及不同指标对其进行了实验验证.研究结果表明:MBSMM利用非平行边界超平面可以完成对复杂数据样本的准确分类,在识别率、时间、kappa、准确率、召回率、F1得分和统计检验等方面具有良好表现,证明了RSMM具有优越的分类性能.
推荐文章
WVPMCD及其在滚动轴承故障诊断中的应用
WVPMCD
局部特征尺度分解
加权最小二乘
滚动轴承
故障诊断
基于多尺度熵的滚动轴承故障诊断方法
样本熵
多尺度熵
滚动轴承
故障诊断
复杂性
EMD模糊聚类法及在滚动轴承故障诊断中的应用
滚动轴承经
验模态分解(empirical mode decomposition,EMD)
模糊聚类
故障诊断
滚动轴承故障诊断研究
滚动轴承
MATLAB软件
BP神经网络
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多分类边界支持矩阵机及其在滚动轴承故障诊断中的应用
来源期刊 机电工程 学科 工学
关键词 多分类边界支持矩阵机 滚动轴承 故障诊断 非平行边界超平面
年,卷(期) 2022,(1) 所属期刊栏目 机械零件及传动装置|Mechanical Parts and Transmission
研究方向 页码范围 65-70
页数 6页 分类号 TH133.33
字数 语种 中文
DOI 10.3969/j.issn.1001-4551.2022.01.010
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多分类边界支持矩阵机
滚动轴承
故障诊断
非平行边界超平面
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机电工程
月刊
1001-4551
33-1088/TM
大16开
浙江省杭州市大学路高官弄9号
32-68
1971
chi
出版文献量(篇)
6489
总下载数(次)
9
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导