基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Standard machine-learning approaches involve the centralization of training data in a data center,where centralized machine-learning algorithms can be applied for data analysis and inference.However,due to privacy restrictions and limited communication resources in wireless networks,it is often undesirable or impractical for the devices to transmit data to parameter sever.One approach to mitigate these problems is federated learning(FL),which enables the devices to train a common machine learning model without data sharing and transmission.This paper provides a comprehensive overview of FL applications for envi-sioned sixth generation(6G)wireless networks.In particular,the essential requirements for applying FL to wireless communications are first described.Then potential FL applications in wireless communica-tions are detailed.The main problems and challenges associated with such applications are discussed.Finally,a comprehensive FL implementation for wireless communications is described.
推荐文章
6G——搭建多维感知与信息融合网络
6G
移动通信技术
多维感知
新闻传播
通感算融合
移动智联语境下6G传播的场景建构
移动智联
6G传播
场景建构
智能化
技术革命
基于6G网络的元宇宙应用技术研究
元宇宙
6G
沉浸式
虚拟世界
物理世界
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Federated Learning for 6G:Applications,Challenges,and Opportunities
来源期刊 工程(英文) 学科
关键词
年,卷(期) 2022,(1) 所属期刊栏目 6G Requirements, Vision, and Enabling Technologies-Review
研究方向 页码范围 33-41
页数 9页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
工程(英文)
双月刊
2095-8099
10-1244/N
16开
北京市朝阳区惠新东街4号
80-744
2015
eng
出版文献量(篇)
817
总下载数(次)
8
论文1v1指导