基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对辛几何模态分解方法在分解复杂信号时的特征提取能力不足问题,提出了一种基于滑移辛几何模态分解(SSGMD)的故障诊断方法.首先,通过加窗的方式构造了滑移矩阵,以代替轨迹矩阵,增强了周期性特征提取能力;其次,对滑移矩阵进行了辛几何相似变换,获得了其特征值,将特征值所对应的特征向量经过重构,得到了其初始单分量矩阵;然后,对初始单分量矩阵做对角平均化,得到了一系列初始辛几何分量;最后,对这一系列初始辛几何分量进行拼接重组,得到了滑移辛几何分量(SSGCs),进而完成了对信号的自适应分解.研究结果表明:通过对仿真信号和行星齿轮箱实测信号进行实验分析,可知SSGMD利用滑移矩阵和辛几何相似变换不仅可以保护原始信号结构化信息不变,而且能充分提取原始信号的状态信息;与经典的信号分解方法相比,SSGMD方法能有效地对多分量信号进行分解,具有优越的特征提取能力.
推荐文章
基于1-DCNN的行星齿轮箱故障诊断
1-DCNN智能诊断
特征提取
行星齿轮箱
基于EMD-SVD与PNN的行星齿轮箱故障诊断研究
行星齿轮箱
经验模态分解
奇异值分解
概率神经网络
故障诊断
基于变分模态分解和相关峭度的齿轮箱混合故障诊断
齿轮箱
混合故障
变分模态分解
相关峭度
包络分析
基于LMD样本熵与ELM的行星齿轮箱故障诊断
行星齿轮箱
局域均值分解
样本熵
极限学习机
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于滑移辛几何模态分解的行星齿轮箱故障诊断研究
来源期刊 机电工程 学科 工学
关键词 行星齿轮箱 复杂信号分解 滑移辛几何模态分解 特征提取能力 信号自适应分解 滑移矩阵
年,卷(期) 2022,(4) 所属期刊栏目 机械零件及传动装置|Mechanical Parts and Transmission
研究方向 页码范围 427-434,443
页数 9页 分类号 TH132.41
字数 语种 中文
DOI 10.3969/j.issn.1001-4551.2022.04.001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
行星齿轮箱
复杂信号分解
滑移辛几何模态分解
特征提取能力
信号自适应分解
滑移矩阵
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机电工程
月刊
1001-4551
33-1088/TM
大16开
浙江省杭州市大学路高官弄9号
32-68
1971
chi
出版文献量(篇)
6489
总下载数(次)
9
总被引数(次)
41536
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导