基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Although experimental evidence has suggested that the polymer brush border (PBB) on the cartilage surface is important in regulating fluid permeability in the contact gap, the current theoretical understanding of joint lubrication is still limited. To address this research gap, a multiscale cartilage contact model that includes PBB, in particular its effect on the fluid permeability of the contact gap, is developed in this study. Microscale modeling is employed to estimate the permeability of the contact gap. This permeability is classified into two categories: For a gap size > 1 μm, the flow resistance is assumed to be dominated by the cartilage roughness; for gap size < 1 μm, flow resistance is assumed to be dominated by the surface polymers extending beyond the collagen network of the articular cartilage. For gap sizes of less than 1 μm, the gap permeability decreases exponentially with increasing aggrecan concentration, whereas the aggrecan concentration varies inversely with the gap size. Subsequently, the gap permeability is employed in a macroscale cartilage contact model, in which both the contact gap space and articular cartilage are modeled as two interacting poroelastic systems. The fluid exchange between these two media is achieved by imposing pressure and normal flux continuity boundary conditions. The model results suggest that PBB can substantially enhance cartilage lubrication by increasing the gap fluid load support (e.g., by 26 times after a 20-min indentation compared with the test model without a PBB). Additionally, the fluid flow resistance of PBB sustains the cartilage interstitial fluid pressure for a relatively long period, and hence reduces the vertical deformation of the tissue. Furthermore, it can be inferred that a reduction in the PBB thickness impairs cartilage lubrication ability.
推荐文章
Influence of the biological carbon pump effect on the sources and deposition of organic matter in Fu
Carbonate weathering
Hydrochemical variation
Biological carbon pump effect
Sediment trap
Autochthonous organic carbon
Carbon sink
Geochemical tracing and modeling of surface and deep water-rock interactions in elementary granitic
Weathering
Water pathways
U activity ratios
Sr isotope ratios
Anthropogenic gases (CFC,SF6)
CZO
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Investigation of role of cartilage surface polymer brush border in lubrication of biological joints
来源期刊 摩擦(英文版) 学科
关键词
年,卷(期) 2022,(1) 所属期刊栏目 Research Articles
研究方向 页码范围 110-127
页数 18页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
摩擦(英文)
双月刊
2223-7690
10-1237/TH
北京市海淀区清华大学建筑学院
eng
出版文献量(篇)
309
总下载数(次)
0
总被引数(次)
195
论文1v1指导