基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
社区发现算法对分析复杂网络的拓扑和层次结构、预测复杂网络的演化趋势等具有十分重要的意义.传统的社区发现算法划分精度不高,忽略了网络嵌入的重要性.针对这样的问题,提出了基于节点相似性和网络嵌入Node2Vec方法的无参数社区发现算法.首先,使用网络嵌入Node2Vec方法将网络节点映射成欧氏空间中低维向量表示的数据点,计算低维向量表示的数据点之间的余弦相似性,根据相应节点间的最大相似性构建偏好网络,得到初始社区划分,把每个初始社区的最大度节点作为备选节点;然后根据网络平均度和平均最短路径找出备选节点中的中心节点;最后将中心节点对应的数据点及其数量作为初始质心和聚类数,用K-Means算法对低维向量表示的数据点进行聚类,从而对相应的网络节点完成社区划分.该算法为无参数社区划分方法,可以自主地从网络中提取参数,无须根据网络的不同设定不同的超参数,从而可以自动地快速识别复杂网络的社区结构.在8个真实网络和人工网络上,将其与其他5个知名社区发现算法相比较,数值仿真实验表明所提算法具有很好的社区发现效果.
推荐文章
基于网络嵌入和关联相似性的链路预测算法
链路预测
复杂网络
相似性
网络嵌入
关联
复杂网络半监督的社区发现算法研究
广义社区发现
半监督聚类
社会网络分析
相似度
Girvan-Newman(GN)
基于相似度传播的复杂网络间节点匹配算法
复杂网络
节点匹配
节点相似度
基于节点地位和相似性的社交网络边符号预测
边符号预测
节点地位
节点相似性
逻辑回归
随机梯度上升算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于节点相似性和网络嵌入的复杂网络社区发现算法
来源期刊 计算机科学 学科 工学
关键词 无参数社区发现 节点相似性 偏好网络 网络嵌入 K-Means聚类
年,卷(期) 2022,(3) 所属期刊栏目 数据库&大数据&数据科学|Database & Big Data & Data Science
研究方向 页码范围 121-128
页数 8页 分类号 TP391
字数 语种 中文
DOI 10.11896/jsjkx.210200009
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
无参数社区发现
节点相似性
偏好网络
网络嵌入
K-Means聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学
月刊
1002-137X
50-1075/TP
大16开
重庆市渝北区洪湖西路18号
78-68
1974
chi
出版文献量(篇)
18527
总下载数(次)
68
总被引数(次)
150664
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导